C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Discrete Mathematics

Subject Code: 4TE04DSM1		Branch: B.Tech (CE)	
Semester: 4	Date: 15/04/2019	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	Attempt the following questions:	(14)
a)	Find the least and greatest element in the poset $\langle N, D \rangle$, if they exist.	
b)	Define: Poset, Pseudo Graph	
c)	State Pigeonhole principle.	(02)
d)	Find the atom and anti-atom of $\langle S_{60}, D \rangle$.	
e)	Prove that $(ab+ab')a'b'=0$.	
f)	$(Z_{11},+_{11})$ is cyclic group True or False?	(01)
g)	How many edges are there in a graph with 7 vertices each of degree 4?	(01)
h)		
Attemp	any four questions from Q-2 to Q-8	
Q-2	Attempt all questions.	(14)
a)	State and prove Stone's representation theorem.	(10)
b)	State Distributive law for fuzzy subsets and prove any one.	(04)
Q-3	Attempt all questions	(14)
a)	Show that $\{0, 2, 4, 6\}$ is a subgroup of $(Z_8, +_8)$, where $+_8$ is addition modulo 8.	(05)
b)	Prove that $\langle S_{42}, D \rangle$ is a complemented lattice and also draw the Hasse diagram of it.	(05)
c)	Prove that $\langle S_6, D \rangle$ is a sub lattice of $\langle S_{30}, D \rangle$.	(04)
Q-4	Attempt all questions	(14)
-	Show that the set $\Omega \setminus \{1\}$ is an abalian group with respect to the binary operation	(07)

a) Show that the set $Q \setminus \{-1\}$ is an abelian group with respect to the binary operation (07) a * b = a + b + ab, for all $a, b \in G$.

Page 1 of 3

b) Let $E = \{a, b, c\}, A = \{(a, 0.4), (b, 0.7), (c, 0.6)\}, B = \{(a, 0.8), (b, 0.2), (c, 0.5)\}$ then (07) find the following:

1) $A \cup B$ 2) $A \cdot B$ 3) A + B 4) A - B 5) $A \cap B$ 6) A' 7) B'

Q-5 Attempt all questions (14) a) For a lattice ⟨P({a,b,c}),⊆⟩, answer the following questions: (07) i) Find cover of each element and draw the Hasse diagram. ii) Find lower bound, upper bound, greatest lower bound, least upper bound of A = {{a,b}}. iii) Find the least and greatest element of it. b) Let ⟨L,≤⟩ be a lattice a, b ∈ L then prove that (07)

i) $a \le b \Leftrightarrow a \ast b = a \Leftrightarrow a \oplus b = b$ *ii*) $a \le c \Leftrightarrow a \oplus (b \ast c) \le (a \oplus b) \ast c$

Q-6 Attempt all questions

- (14)
- a) i) Draw the graph represented by given adjacency matrix $\begin{bmatrix} 1 & 2 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 \end{bmatrix}$. (05)
 - ii) Write the adjacency matrix from the given digraph.

b) State and prove Lagrange's theorem.

(05)

(14)

(05)

c) By using mathematical induction prove that
$$1+2+3+...+n = \frac{n(n+1)}{2}$$
. (04)

Q-7 Attempt all questions.

- a) Obtain the sum of product canonical form of the Boolean expression in three (05) variables $\alpha(x, y, z) = (x \oplus y)' \oplus z$.
- **b**) Prove that (Z_6^*, \times_6) is a group. Is it commutative?

Page 2 of 3

c) Find all node base of the following diagraph shown in the figure.

Q-8 Attempt all questions.

(14)

(07)

- a) Define tree and draw a directed tree from following and also find the representation of (07) binary tree. $(v_0(v_1(v_2)(v_3(v_4)(v_5)))(v_6(v_7(v_8))(v_9)(v_{10})))$
- **b**) Do as directed:
 - 1) Translate the following in your own words.
 - A(x): x is a whale, B(x): x is a fish, C(x): x lives in water.

i)
$$(\exists x) (B(x) \land \sim A(x))$$
 ii) $(\forall x) (A(x) \lor C(x)) \Rightarrow B(x)$

2) Solve the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2}$, $n \ge 2$; $a_0 = 1$, $a_1 = 2$.

Page 3 of 3

(04)